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Abstract: Heme oxygenase catalyzes the rate-limiting step in heme degradation in order to generate
biliverdin, carbon monoxide (CO), and iron. The inducible form of the enzyme, heme oxygenase-1
(HO-1), exerts a central role in cellular protection. The substrate, heme, is a potent pro-oxidant that can
accelerate inflammatory injury and promote cell death. HO-1 has been implicated as a key mediator of
inflammatory cell and tissue injury, as validated in preclinical models of acute lung injury and sepsis.
A large body of work has also implicated HO-1 as a cytoprotective molecule against various forms of
cell death, including necrosis, apoptosis and newly recognized regulated cell death (RCD) programs
such as necroptosis, pyroptosis, and ferroptosis. While the antiapoptotic potential of HO-1 and its
reaction product CO in apoptosis regulation has been extensively characterized, relatively fewer
studies have explored the regulatory role of HO-1 in other forms of necrotic and inflammatory RCD
(i.e., pyroptosis, necroptosis and ferroptosis). HO-1 may provide anti-inflammatory protection in
necroptosis or pyroptosis. In contrast, in ferroptosis, HO-1 may play a pro-death role via enhancing
iron release. HO-1 has also been implicated in co-regulation of autophagy, a cellular homeostatic
program for catabolic recycling of proteins and organelles. While autophagy is primarily associated
with cell survival, its occurrence can coincide with RCD programs. This review will summarize the
roles of HO-1 and its reaction products in co-regulating RCD and autophagy programs, with its
implication for both protective and detrimental tissue responses, with emphasis on how these impact
HO-1 as a candidate therapeutic target in disease.

Keywords: apoptosis; autophagy; carbon monoxide; cell death; ferroptosis; heme oxygenase; inflam-
masome; inflammation; necroptosis; pyroptosis

1. Introduction

Heme oxygenase (HO-1), a vital metabolic enzyme, has emerged as a central effector
of the mammalian stress response [1,2]. Early studies of microsomal metabolic activities
established heme oxygenase (HO) as the rate-limiting step in heme degradation [3]. HO ac-
tivity catalyzes the oxidative cleavage of heme at the α-methene bridge carbon, released as
carbon monoxide (CO), to generate biliverdin-IXα (BV), while releasing the central heme
iron chelate as ferrous iron (Fe II) [3]. The BV generated in the HO reaction is subsequently
reduced by NAD(P)H: biliverdin reductase, to generate the lipid-soluble bile pigment
bilirubin-IXα (BR) (Figure 1) [4]. Cellular HO activity is provided by two major isoforms,
an inducible isozyme (HO-1) and a constitutively expressed isozyme (HO-2), which have
distinct biochemical properties and arise from separate genes [5,6].
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Figure 1. HO activity and role in cytoprotection. Heme oxygenase (HO: heme, hydrogen-donor:oxygen oxidoreductase 
(α-methene-oxidizing, hydroxylating), EC: 1:14:99:3) is the rate-limiting step in heme degradation. HO catalyzes the oxi-
dative cleavage of heme at the α-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin-IXα 
(BV), while releasing the central heme iron chelate as ferrous iron (Fe II). Enzymatic heme degradation requires three 
moles of molecular oxygen (O2) and electrons derived from NADPH-cytochrome p450 reductase (EC: 1.6.2.4). The BV 
generated in the HO reaction is subsequently reduced by NAD(P)H: biliverdin reductase (BVR; EC: 1.3.1.24) to generate 
the lipid-soluble bile pigment bilirubin-IXα (BR). The source of heme for the HO reaction is derived from the turnover of 
hemoglobin and cellular hemoproteins. Free unbound heme released from hemolysis may represent a pro-oxidant hazard 
to vascular endothelium and may initiate pro-inflammatory reactions. BV and BR are known antioxidants, with circulating 
BR implicated as a mitigator of cardiovascular disease risk. Iron released from HO activity is equilibrated into ferritin 
storage, whereas unbound iron may propagate injury via catalysis of free radical-generating reactions. CO evolving from 
HO activity may modulate cellular function, via regulation of vascular function, immune system function, inflammation, 
apoptosis, and cellular proliferation. Abbreviations: CO: carbon monoxide; Cyt p450: cytochrome p450; iNOS: inducible 
nitric oxide synthase; NF-κB: nuclear factor-kappa-B; NOX: NADPH oxidase isoforms; p38 MAPK: p38 mitogen-activated 
protein kinase; sGC: soluble guanylate cyclase; TLR4: Toll-like receptor-4; UDP: uridine 5’-diphosphate. 

The HO-1 field continues to attract worldwide research interest, from its mechanistic 
roles in regulating fundamental biological and metabolic processes, to its continuing sta-
tus as a candidate therapeutic target in many disease states. Investigations in the mid-
1980s established HO-1 as identical to a 32 kDa shock protein regulated by multiple forms 
of chemical and physical cellular stress, including oxidizing ultraviolet-A radiation, and 
heavy metals [7–9]. The importance of HO-1 in systemic homeostasis and iron balance 
was deduced from early studies using mice genetically deficient in HO-1 (Hmox1-/-). These 
mice were characterized by abnormal systemic iron metabolism including hepatic and 
renal iron deposition and anemia. Furthermore, these mice and endothelial cells derived 
from these mice were highly susceptible to oxidative stress [10,11]. The essential role of 
HO-1 in human physiology was also underscored by a unique case of HO-1 genetic defi-
ciency in a human subject, who bore symptoms of systemic endothelial cell injury, anemia, 

Figure 1. HO activity and role in cytoprotection. Heme oxygenase (HO: heme, hydrogen-donor:oxygen oxidoreductase
(α-methene-oxidizing, hydroxylating), EC: 1:14:99:3) is the rate-limiting step in heme degradation. HO catalyzes the
oxidative cleavage of heme at the α-methene bridge carbon, released as carbon monoxide (CO), to generate biliverdin-IXα
(BV), while releasing the central heme iron chelate as ferrous iron (Fe II). Enzymatic heme degradation requires three
moles of molecular oxygen (O2) and electrons derived from NADPH-cytochrome p450 reductase (EC: 1.6.2.4). The BV
generated in the HO reaction is subsequently reduced by NAD(P)H: biliverdin reductase (BVR; EC: 1.3.1.24) to generate
the lipid-soluble bile pigment bilirubin-IXα (BR). The source of heme for the HO reaction is derived from the turnover of
hemoglobin and cellular hemoproteins. Free unbound heme released from hemolysis may represent a pro-oxidant hazard to
vascular endothelium and may initiate pro-inflammatory reactions. BV and BR are known antioxidants, with circulating BR
implicated as a mitigator of cardiovascular disease risk. Iron released from HO activity is equilibrated into ferritin storage,
whereas unbound iron may propagate injury via catalysis of free radical-generating reactions. CO evolving from HO activity
may modulate cellular function, via regulation of vascular function, immune system function, inflammation, apoptosis,
and cellular proliferation. Abbreviations: CO: carbon monoxide; Cyt p450: cytochrome p450; iNOS: inducible nitric oxide
synthase; NF-κB: nuclear factor-kappa-B; NOX: NADPH oxidase isoforms; p38 MAPK: p38 mitogen-activated protein
kinase; sGC: soluble guanylate cyclase; TLR4: Toll-like receptor-4; UDP: uridine 5’-diphosphate.

The HO-1 field continues to attract worldwide research interest, from its mechanistic
roles in regulating fundamental biological and metabolic processes, to its continuing
status as a candidate therapeutic target in many disease states. Investigations in the
mid-1980s established HO-1 as identical to a 32 kDa shock protein regulated by multiple
forms of chemical and physical cellular stress, including oxidizing ultraviolet-A radiation,
and heavy metals [7–9]. The importance of HO-1 in systemic homeostasis and iron balance
was deduced from early studies using mice genetically deficient in HO-1 (Hmox1−/−).
These mice were characterized by abnormal systemic iron metabolism including hepatic
and renal iron deposition and anemia. Furthermore, these mice and endothelial cells
derived from these mice were highly susceptible to oxidative stress [10,11]. The essential
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role of HO-1 in human physiology was also underscored by a unique case of HO-1 genetic
deficiency in a human subject, who bore symptoms of systemic endothelial cell injury,
anemia, and abnormal tissue iron accumulation [12]. Seminal studies on the macrophage
inflammatory response established HO-1 as an anti-inflammatory mediator, which can
limit Toll-like receptor-4 (TLR4)-dependent pro-inflammatory cytokine(s) production in
activated macrophages [13]. Accumulating research since then has revealed that HO-1 can
exert pleiotropic roles in mitigating inflammation, via multiple molecular mechanisms
including modulation of p38 mitogen-activated protein kinase (MAPK) activity [13,14].
Furthermore, additional pioneering studies established HO-1 as an antagonist of TNF-
induced endothelial cell apoptosis [15].

Cell death pathways were traditionally segregated into genetically regulated and non-
regulated programs (i.e., apoptosis and necrosis, respectively) [16–18]. Apoptosis requires
the activation of cysteine proteases (e.g., caspases) and endonucleases without loss of
plasma membrane integrity, and is morphologically characterized by cytosolic shrinkage,
membrane blebbing, chromatin condensation and DNA fragmentation [19]. In contrast,
necrosis was defined as an accidental or catastrophic cell death characterized by loss of
energy charge, cell swelling, and plasma membrane damage resulting in the leakage of
cytosolic constituents into the extracellular space, and which may trigger local inflammation
and damage to surrounding tissues [18].

Further emergent discoveries have elucidated novel cell death pathways, accompanied
by the paradigm-shifting revelation that certain modes of cell death that share morpho-
logical features of necrosis can also be regulated by underlying genetic programs [16].
The resulting change in cell death nomenclature now groups apoptosis with distinct forms
of regulated necrosis under the term regulated cell death (RCD), to exclude non-regulated
necrosis now classified as accidental cell death (ACD) [16]. The newly recognized forms
of RCD include ferroptosis, pyroptosis, necroptosis, and other modalities as recently re-
viewed [20]. An additional genetically regulated cellular program, referred to as autophagy,
represents a mechanism for cellular catabolism. Autophagy was originally classified as a
cell death mode due to its coincidence with RCD and may also impact the regulation of
inflammation [21].

Investigation into the role of HO-1 in cell death and related pathways was initially
restricted to its largely protective role apoptosis and necrosis. Emerging studies suggest
that HO-1 will have a complex modulatory or regulatory role in not only apoptosis and
autophagy, but also in newly uncovered forms of RCD, namely pyroptosis, necroptosis,
and/or ferroptosis. This review will summarize the underlying molecular mechanisms of
regulation and function that characterize HO-1 as a unique response to oxidative stress
and inflammation, and as a mitigator of cell survival and cell death programs; with con-
sideration on how these processes may ultimately impact the candidate role of HO-1 as a
therapeutic target in disease.

2. Molecular Regulation of Heme Oxygenase-1

HO-1 expression responds to many diverse chemical and physical agents, including the
substrate heme, a pro-oxidant compound, oxidants (e.g., H2O2), exposure to ultraviolet-
A radiation, nitric oxide (NO), heavy metals and other thiol-reactive chemicals [2,7–9,14].
Further, a broad class of electrophilic plant-derived polyphenolic compounds including
flavonoids and other natural antioxidants are potent inducers of HO-1 [22–28]. HO-1 re-
sponds to pro-oxidant states associated with enhanced reactive oxygen species (ROS)
generation, as can be produced from dysfunctional mitochondria (mtROS) or activated
inflammatory cells. Altered states of oxygen tension (pO2) above and below physiological
levels can also modulate ROS production from mitochondrial metabolism. High oxygen
tension (hyperoxia) increases substrate availability (O2) for enhanced mitochondrial ROS
(mtROS) production, and/or increased NADPH oxidase enzymatic activity, represented by
superoxide (O2

−) production, and acts as a potent inducing signal for HO-1 [29]. In con-
trast, low pO2 (hypoxia) also favors increased ROS flux in the electron transport chain by
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impairing cytochrome-c oxidase activity, and selectively induces HO-1 in a species-specific
manner, particularly in rodents [30,31]. HO-1 upregulation by these agents occurs mainly
by transcriptional upregulation of the HMOX1 gene (Hmox1 in rodents), and results in de
novo synthesis of the protein [32].

Extensive mechanistic studies have revealed that HO-1 gene regulation responds to
positive regulation by nuclear factor erythroid 2-related factor-2 (Nrf2), a Cap’n’collar/basic-
leucine zipper family protein that can heteromerize with small Maf proteins [33]. Nrf2 is
regarded as a master regulator of the antioxidant response and regulates a series of
other genes involved in detoxification. The Kelch-like ECH-associated protein (Keap1)
inhibits HO-1 expression by acting as a cytoplasmic anchor for Nrf2 under basal condi-
tions [34,35]. Keap1 enables the targeting of Nrf2 by Cullin 3-based E3 ubiquitin ligase
complex, which marks Nrf2 for proteasomal degradation [36,37]. When cells are exposed
to inducing stimuli, Keap1 dissociates from Nrf2, which subsequently translocates to the
nucleus, where it can activate gene expression, including the Hmox1 gene [33].

Transcription factor Bach-1 acts as a transcriptional repressor of HO-1 gene expres-
sion via competition with Nrf2 [31,38–40]. Heme can inhibit the DNA-binding activity
of Bach-1 by direct binding, as well as promote the nuclear export of Bach-1 and inhibit
the proteasomal degradation of Nrf2, hereby increasing HO-1 expression [38,39,41,42].
Both Nrf2 and Bach-1 target distinct sites located in the promoter regions of Hmox1 genes.
Comprehensive promoter analyses of the Hmox1 gene uncovered enhancer regions located
at −4 kb and −10 kb relative to the Hmox1 transcriptional start site [43,44]. The domi-
nant sequence element of the enhancers is the stress-responsive element (StRE), which is
synonymous with the Maf response element (MARE) and antioxidant response element
(ARE) [45,46]. A number of additional transcription factors have been implicated in HO-1
transcriptional regulation in a cell type-specific and inducer-specific fashion. These include
AP-1 (Fos/Jun heterodimer), AP-2, heat shock factor-1 (HSF-1), hypoxia-inducible factor-1
(HIF-1), early growth-1 protein (Egr-1), nuclear factor-kappa-B (NF-κB), and cyclic AMP
responsive element binding protein (CREB). The relative importance of these has been
reviewed elsewhere [47,48].

In addition to regulation by transcription factor networks, emerging evidence sug-
gests that HO-1 is post-transcriptionally regulated [49]. Several studies have implicated
microRNAs (miRs) directly or indirectly in HO-1 regulation [50–59]. The miRs are small
non-coding RNAs that can impact the outcome of gene expression by altering mRNA sta-
bility or translation. Previous studies have identified miR candidates that can directly or in-
directly influence HO-1 expression in a context-specific fashion. For example, miR-494 was
found to promote HO-1 expression under oxidative stress conditions in neurons [50].
miR-378 overexpression was shown to downregulate HO-1 coincident with promotion
of cell proliferation, whereas HO-1 expression reciprocally downregulated miR-378 [51].
Other miRs identified as influencing HO-1 regulation include inhibition by miR-24/mIR-
24-3p [54], miR-200c [55], miR-155 [56], and miR-377/miR-217 [57]. Recent studies also
implicate miRNA-dependent regulation of HO-1 in modulation of allergic inflammation
(i.e., miR-205, miR-203, and miR-483-5p) [58], and iron-dependent neuroinflammation
(miR-183-5p) [59].

Importantly, miRs can also indirectly regulate HO-1 via regulating the expression
and/or stability of its upstream regulatory molecules, such as Nrf2 [55,60–64], or its cyto-
plasmic anchor molecule Keap1 [65,66]. For example, miR-101 promoted Nrf2 expression
via inhibition of its ubiquitination [62], whereas miR-141-3p and miR200a were found
to target Keap1, resulting in indirect activation of Nrf2 and HO-1 [65,66]. Several miRs
(e.g., miR-155, mIR-196, let-7, miR-98-5p) can influence HO-1 expression through the
downregulation of the transcriptional repressor Bach-1 [67–70]. HO-1 has also been im-
plicated as an upstream functional influencer of miR networks, which in turn implicate
downstream miR-dependent effects as possibly mediating the functional effects of HO-1
in various biological processes, including differentiation, angiogenesis, cell proliferation,
inflammation and tumorigenesis [71,72]. For example, expression of HO-1 in myoblasts led
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to inhibition of specific (myo)miRs (e.g., miR-1, miR-133a/b, and miR-206) associated with
inhibition of myoblast differentiation [73]. An effect of the non-canonical nuclear HO-1
(NHO-1) on blood–spinal cord barrier integrity was attributed to regulation of miR-181c-
5p [74]. HO-1 overexpression has also been associated with promotion of rhabdosarcoma
tumors via a mechanism involving HDAC4 nuclear localization and downregulation of
miR-206. Conversely, inhibition of HO-1 activity or of HDAC4 activated a myogenic
program via upregulation of miR-206 [75].

Taken together, these observations highlight an increasing complexity of HO-1 regula-
tion and function in which miR-dependent regulation has now been implicated.

Accumulating genetic epidemiology studies have suggested that non-coding polymor-
phisms can occur in the HMOX1 gene and impact gene regulation in carriers. Microsatellite (GT)n
dinucleotide length polymorphism were found to occur in the promoter region of the hu-
man HMOX1 gene, which can inhibit transcriptional regulation and HO-1 expression in
carriers of the long (L) allele [ie., (GT)n ≥ 30] [76]. Several studies have described asso-
ciations with the L allele and susceptibility or severity to cardiovascular diseases (CVD),
including coronary artery disease (CAD) and atherosclerosis [77–79]. Subjects homozy-
gous for (GT)n ≥ 32 had greater CVD risk, enhanced atherosclerosis progression, and a
trend toward increased oxidative stress biomarkers [77]. Recent studies indicate that CAD
patients with reduced ejection fraction had longer HMOX1 promoter (GT)n repeats than
those with mid-range ejection fraction. The presence of L-allele was a predictor for diag-
nosis of low ejection fraction in CAD [78] and susceptibility to CAD among diabetics [78].
Additional studies describe associations of (GT)n ≥ 30 alleles with critical conditions
such as acute respiratory distress syndrome (ARDS) [80], and sepsis-induced acute kidney
injury [81], preeclampsia [82], and risk of Type 2 diabetes [83].

In studies of chronic lung disease, L alleles of the (GT)n repeat (variable lengths
but typically ≥30) were correlated with COPD susceptibility [84], emphysema [76],
and COPD severity (Chinese cohort) [85,86]; with responsiveness to antioxidant therapy [87],
lung function decline in COPD [88], and lung function decline in heavy smokers [89].
However, independent validation studies either failed to find association of HMOX1 poly-
morphisms with lung function decline in smokers [90] or reported differential association
of (GT)n = 30, but not (GT)n = 31 [91]. Lymphoblastoid cells for the L allele were more
susceptible to oxidant-mediated apoptosis in culture, than cells isolated from carriers of
short alleles [92]. Taken together, these investigations suggest that genetic variants in
HMOX1 gene promoter regions that inhibit gene expression may arise in subpopulations
and may be linked to increased susceptibility to oxidative stress and related diseases.
Additional studies will be required to prove these associations in a disease-specific manner.

3. HO-1-Mediated Cytoprotection, a Coordinated Protective Stratagem Based on Heme
Removal and Heme Breakdown Product Generation

Since its discovery in 1968 [3], and its identification as a stress protein in 1988 [7],
the mechanism(s) by which HO-1 can confer protection in cells and tissues, in the context
of its induction by stress stimuli, remain partially understood. As the degradation of heme
is the primary enzymatic function of HO-1, it stands as a valid hypothesis that its function
in hemoprotein turnover and heme removal represents a cardinal mechanism underlying
cytoprotection [93–96]. Indeed, heme, which has a central iron atom, has been implicated as
a pro-oxidant and catalyst of free radical-generating reactions [93,97], a cytotoxic molecule
with respect to vascular endothelial cells [98,99], and a pro-pathogenic mediator of diseases
such as sepsis, and malaria [100,101]. Thus, the removal of heme by HO-1 may serve a
context-specific protective and antioxidant function, via precluding heme from aggravating
injurious or pathological processes [93–95]. By degrading heme, HO releases heme iron [1],
which itself can present harmful sequelae unless detoxified, including potential catalysis
of Fenton chemistry, and production of ROS and lipid peroxides [102,103]. HO-derived
iron has been associated with the regulation of de novo ferritin synthesis, which in turn
was associated in adaptive cytoprotection against pro-oxidant stimuli such as UVA radi-
ation [104,105]. Ferritin is a complex multimeric molecule consisting of H and L chains
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which sequesters intracellular redox active iron in a crystalline core [106]. Ferritin has
been characterized as a cytoprotective molecule in the vascular endothelium [107–109].
HO activity also releases BV which in turn is reduced to BR [3]. Both BV and BV have been
shown to possess antioxidant properties in serum and bile and can attenuate free radical-
generating reactions [110–113]. Much research has focused on the biological properties
of CO, which originates from the α-methene bridge of heme during HO-mediated heme
catalysis [3], and has emerged as an endogenous gaseous signaling mediator. CO derived
from HO-1 activity was implicated in anti-inflammatory effects in macrophages based on
the modulation of p38 MAPK activity. Evidence has accumulated that low concentration
CO, when applied exogenously, can confer cyto- and tissue protection in inflammatory
disease models in effect by influencing inflammation, apoptosis, and cell proliferation
programs [2,14,114,115]. Under conditions where HO-1 is associated with cytoprotection,
the pleiotropic effects of HO-1 may represent a complex cooperation of the generation
and distribution of bioactive catabolic products and their downstream effects [2,14,116].
To achieve these cytoprotective effects, HO-1 expression must be tightly regulated. In con-
trast, detrimental functional roles of HO activity have been ascribed to iron overload
effects [117,118], and may be relevant in neurodegenerative diseases [119].

4. Non-Canonical Roles for HO-1-Mediated Protection

An emerging hypothesis suggests that the biological and cellular functions of HO-1
may in part relate to specific subcellular compartmentalization, and/or may transcend the
catalytic breakdown of heme, with certain effector functions that are independent of its
enzymatic reaction products (Figure 2) [120,121]. While limited studies support this notion,
this may include possible intermolecular interactions between other cellular proteins,
that influence the function of other signaling proteins in an activity-independent fashion.
One of these proposed interactions is that of HO-1 with CD91 [121]. An intermolecular
interaction of HO-1 with the pro-apoptotic molecule Bax was described in a proposed
antiapoptotic mechanism in the context of endothelial cell injury [122]. HO-1 is also
reported to translocate to the nucleus under stress conditions, where it may influence
nuclear function [123]. The nuclear form of HO-1 (NHO-1) is reported to exist in a truncated
form (28 kDa), and to be devoid of heme-degrading activity [124]. NHO-1 has been
described as a regulator of nuclear transcription factor activities, as exemplified by NF-κB
p65, AP-1, and Nrf2-dependent activities [121]. The bimolecular interaction of NHO-1 with
Nrf2 was shown to prevent GSK3β-mediated phosphorylation of Nrf2 and proteolytic
degradation, thereby stabilizing Nrf2 [124]. The NHO-1-mediated stabilization of Nrf2 was
shown to promote transcriptional regulation of several Nrf2 target genes, including NQO1
and G6PDH [124]. Recent studies indicated that artificial overexpression of NHO-1 (COOH-
terminal truncated form) can confer protection in a model of blood–spinal cord barrier
integrity, by the downstream modulation of miR-181c-5p and SOX5-mediated upregulation
of tight junction protein expression [74].

In the nucleus, a relationship between HO-1 and regulation of G-quadruplexes has
been proposed. G-quadruplexes (G4) refer to stacked nucleic acid secondary structure in
guanine-rich regions of DNA, that have a high affinity for heme-binding and are stabi-
lized by heme. Hematopoietic stem cells (HSCs) derived from Hmox1−/− mice displayed
increased expression of G4-unwinding helicases (e.g., Brip1 and Pif1) and reduced G4 con-
tent. In contrast, induced pluripotent stem cells (iPSCs) derived from Hmox1−/− mice also
displayed increased helicase expression, but with more G4 content, which was increased by
exogenous heme application [125]. Selective expression of the nuclear isoform NHO-1 was
shown to result in reduction in G4 content in the nucleus [125]. Additionally, EPhenDC3,
a non-heme G4 ligand, was found to displace quadruplex-bound heme in vitro, and to
dramatically induce HO-1 gene expression in human cells [126]. Taken together, these ex-
periments suggest a relationship between HO-1 and degradation of heme released from G4
complexes. Further experimentation will elucidate these relationships.
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induction by chemical and physical stress represents the classical form of HO-1 regulation and is implicated in cellular
homeostasis and cytoprotection. Additional compartment-specific subcellular localization of HO-1 has been described
including stress activated translocation of HO-1 to the mitochondria. The HO-1 likely functions in regulating heme
bioavailability in this compartment/and or localized CO production. HO-1 has also been shown to localize to plasma
membrane caveolae, where it forms an inhibitory complex with caveolin-1. HO-1 may also migrate to the nucleus in a COOH-
terminal truncated nuclear form (NHO-1) that is devoid of enzyme activity. This NHO-1 has been implicated in transcription
factor regulation, including NF-κB, AP-1, and Nrf2, the latter which regulates the antioxidant response, including HO-1 gene
expression. Abbreviations: AP-1: activator protein-1; ER: endoplasmic reticulum; HO-1: heme oxygenae-1; miR: microRNA,
NF-κB: nuclear factor-kappa-B; NHO-1: nuclear HO-1, Nrf2: NF-E2-related factor-2; ROS: reactive oxygen species.

In addition to nuclear localization, evidence has accumulated for localization of HO-1
in other subcellular compartments. Specifically, a mitochondrial localization of functionally
active HO-1 has been reported under stress conditions, and which may regulate heme
bioavailability for mitochondrial cytochromes [127]. Localization of HO-1 to plasma mem-
brane caveolae, and intermolecular interactions with the caveolae resident scaffolding
protein caveolin-1 were also described [128,129]. The caveolin-1 interaction with HO-1
was shown to inhibit HO activity, thus potentially serving as a brake on HO-1 function
in this compartment [128,129]. It is plausible that HO-1 serves as a localized source of
CO production in either mitochondrial or caveolae compartments for discrete signaling
processes, though the functional significance of these localization events remain incom-
pletely understood [127,128]. Finally, non-canonical roles of HO-1 have been suggested to
include possible roles of a circulating cell free form of HO-1 in the extracellular space [120].
HO-1 has been detected in both serum and cerebrospinal fluids and to vary with disease,
thought the functional significance of HO-1 in extracellular fluids remains unclear [120].
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5. HO-1 as a Regulator of Inflammation

HO-1 expression, in particular that of macrophages and inflammatory cells, can po-
tentially modulate the acute inflammatory response, via several proposed mechanisms,
including modulation of TLRs dependent regulation of cytokine gene expression, as well
as other innate immune mechanisms such as regulation of inflammasome-dependent cy-
tokine maturation, macrophage polarization, and resolution of inflammation [2,13,14,130].
Anti-inflammatory effects of HO-1 were originally demonstrated using in vitro and in vivo
models of inflammation and acute lung injury (ALI) [13,131]. Adenoviral-directed HO-1
gene expression inhibited bacterial lipopolysaccharide (LPS)-induced production of pro-
inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β,
IL-6, and macrophage inflammatory protein-1β (MIP-1β) in cultured macrophages, as well
as increased the production of the anti-inflammatory cytokine IL-10 during LPS chal-
lenge [13]. Enhanced gene expression of HO-1 ameliorated LPS-induced lung injury in
mice via increased IL-10 production [13,132]. Enhanced gene expression of HO-1 in lungs
by intratracheal adenoviral-mediated gene transfer also limited murine ALI in response
to influenza virus infection [133]. Conversely, HO-1 was also shown to be upregulated
by IL-10 expression, suggesting that the anti-inflammatory effect of this cytokine may
depend on reciprocal HO-1 activation [134]. Pharmacological application of individual
HO reaction products BV, or of CO (250 ppm) also inhibited pro-inflammatory cytokine
production, upregulated IL-10 levels, and reduced ALI in LPS-treated rodents [13,135].
HO-1 genetically deficient mice (Hmox1−/−) were found susceptible to the lethal effects of
cecal-ligation and puncture (CLP)-induced polymicrobial sepsis, compared with wild-type
mice [100]. The Hmox1−/− mice displayed elevated levels of free circulating heme and
reduced levels of the heme-binding protein hemopexin, rendering them more susceptible
sepsis-induced mortality [100]. The enhanced inflammation associated with sepsis was also
attributed to increased levels of high-mobility group box-1 protein (HMGB1), which was
augmented by Hmox1 deficiency, and ablated by pharmacological upregulation of HO-1 or
application of CO [136,137].

A role of HO-1 (and HO-derived CO) in bacterial clearance during sepsis has also
been proposed. Targeted overexpression of HO-1 to smooth muscle cells and myofibrob-
lasts, and bowel was shown to protect against sepsis-induced mortality associated with
Enterococcus faecalis infection. HO-1-mediated protection in sepsis models was associ-
ated with enhanced bacterial clearance via increased phagocytosis and the endogenous
antimicrobial response [138]. Application of CO (250 ppm, pre- or post-treatment) also
protected mice against polymicrobial sepsis, via stimulating the autophagy pathway and
promoting bacterial clearance by macrophages. The candidate mechanisms by which ex-
ogenous CO modulates the regulation of inflammation and autophagy have been reviewed
elsewhere [2,14].

5.1. Inflammasome Regulation

HO-1 and its reaction product CO have been implicated in modulation of innate
immune responses. Inflammasomes are specialized macromolecular protein complexes
that reside in immune cells and which regulate the proteolytic cleavage of caspase-1.
In turn, caspase-1 is responsible for the maturation and secretion of pro-inflammatory
cytokines including interleukin-1β (IL-1β) and IL-18. The NOD-, leucine-rich region- and
pyrin domain-containing-3 (NLRP3)-dependent inflammasome has been implicated in the
pathogenesis of several acute or chronic inflammatory diseases [139].

Heme pre-conditioning to induce HO-1 can reduce IL-1β maturation and downregu-
late inflammasome activation in a model of sepsis-associated lung injury [140].
Furthermore, induction of HO-1 by heme conditioning was associated with protection from
acute liver injury induced by D-galactosamine and LPS, and with downregulation of the
associated NLRP3 inflammasome-dependent activation of caspase-1 [141]. CO, when ap-
plied exogenously (250 ppm) was found to downregulate NLRP3 inflammasome activation
in bone marrow-derived macrophages (BMDM) stimulated with LPS and ATP. Contrasting
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studies found that CO can upregulate NLRP3 activation in the presence of live bacteria via
mobilization of ATP from bacteria [142,143].

5.2. Macrophage Polarization

Macrophages can be classed in subpopulations (M1, M2) whose distribution change
during exposure to environmental or inflammatory stimuli. M1 macrophages (classi-
cally activated macrophages) are responsive to proinflammatory cytokines such as IFN-γ,
and TNF-α, produce pro-inflammatory cytokines, eliminate intracellular pathogens via
phagocytosis, and promote a local Th1 environment. M2 macrophages (alternatively acti-
vated macrophages) are responsive to IL-4 and IL-13, and regulate Th2 immune responses,
incluing anti-inflammatory cytokine (IL-10) production. Delayed accumulation of M2
macrophages may contribute to tissue fibrosis or repair [144].

HO-1 has been implicated as a modulator of immune responses via the promotion
of macrophage M2 macrophage polarization. HO-1 was found to be highly expressed
in several M2 macrophages subsets, while HO-1 elevation by various inducing stimuli
can drive the phenotypic shift to M2 macrophages [145]. For example, HO-1 expres-
sion was higher in M2 macrophages induced by M-CSF, relative to M1 macrophages
induced by GM-CSF. HO-1 expression in M-CSF-induced M2 macrophages responded
to IL-4 stimulation. Further, HO-1 inducing stimuli such as cobalt protoporphyrin-IX,
augmented LPS-stimulated production of the pro-inflammatory cytokine IL-10 from M2
macrophages. In metastatic melanoma, HO-1 expression was high in CD163(+) tumor-
associated macrophages, which are primarily M2 polarized [146].

In recent genetic validation studies, BMDMs isolated from myeloid-specific HO-1–
knockout (mHO-1–KO), treated with M1-inducing (i.e., LPS) or M2-inducing (i.e., IL-4)
ligands, exhibited increased gene expression of M1 markers (i.e., CXCL10, IL-1β and MCP1)
and decreased expression of M2 markers (i.e., Arg1 and CD163) [147]. These experiments
support the hypothesis that HO-1 promotes the M2 phenotype. In a murine model of
hepatic IRI, mHO-1–KO mice displayed similar decrease in M2 phenotype, in association
with increased susceptibility to IRI. Opposing findings were observed in HO-1 overexpress-
ing transgenic (mHO-1–Tg) mice, with promotion of an M2 phenotype and protection in
hepatic IRI. Human liver transplant biopsies revealed increased HO-1 levels in association
with reduced M1 markers [147].

5.3. Inflammation Resolution

HO-1 and its reaction product CO have also been implicated as regulators of the reso-
lution phase of inflammation [148]. In mice, inhaled CO (250 ppm) inhibited peritoneal neu-
trophil infiltration and shortened resolution interval after zymosan challenge. CO reduced
leukotriene B4 (LTB4) and increased the production of specialized pro-resolving mediators
(SPMs) including resolvin (RvD1) and maresin-1. In human macrophages, exposure to SPM
increased HO-1 expression. CO also enhanced HO-1 expression and accumulation of RvD1
and RvD5, and these events were reversed by inhibition of 15-lipoxygenase type-1 (15-LOX-
1). CO increased phagocytosis by human macrophages, which was further enhanced by
SPM, and antagonized by 15-LOX-1 inhibition. SPM stimulated phagocytosis was reduced
by inhibition of HO-1. In a murine peritonitis model, CO inhalation increased macrophages
efferocytosis and enhanced PMN apoptosis. This study suggested pro-resolving mecha-
nisms for HO-1 and CO, in SPM-initiated resolution of inflammation [148].

5.4. Role of Heme Oxygenase-2 (HO-2) in Inflammation

Whereas HO-1-mediated regulation of inflammation is typically associated with
induction by various stimuli and cellular factors, HO-2, which is typically not regulated by
HO-1-inducing stimuli, has been implicated in the regulation of inflammation.

Mice genetically deleted for HO-2 (Hmox2−/−) displayed a phenotype of exaggerated
inflammatory response in zymosan-induced peritonitis [149]. HO-2 deletion was associated
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with enhanced peritoneal and corneal inflammation, impaired resolution of inflammation,
and reduced HO-1 expression in peritoneal leukocytes [149].

Genetic deletion of Hmox2 in mouse aortic endothelial cells (mAEC) resulted in ele-
vated expression of vascular endothelial growth factor receptor 1 (VEGFR1) and increased
angiogenic response relative to wild-type cells. Furthermore, Hmox2−/− mAEC displayed
increased pro-inflammatory responses including NF-κB activation and pro-inflammatory
cytokines (i.e., IL-1α and IL-6) production. The authors concluded that HO-2 deletion
promotes a pro-inflammatory, pro-oxidative, and pro-angiogenic phenotype [150].

In cerebral microvascular endothelial cells (CMVEC), HO-2, which is highly expressed
in this cell type, was observed to regulate the expression of pro-inflammatory cytokines.
Overexpression of HO-2 inhibited TLR4/myD88-dependent proinflammatory cytokine
expression (i.e., TNF-α and IL-6) in CMVEC [151]. CMVEC isolated from Hmox2−/−

mice were also sensitized to apoptosis in response to serum deprivation and TNF-α rel-
ative to wild-type CMVEC [152]. In a model of injury to corneal epithelium, Hmox2−/−

mice displayed delayed corneal wound closure associated with neutrophil influx [153].
Furthermore, Hmox2−/− mice displayed delayed wound closure and reduced vessel density
and collagen deposition in a mouse model of incisional wound healing [154]. Skin grafts
taken from HO-2 overexpressing mice displayed reduced macrophage inflammatory re-
sponses and improved graft survival in a skin transplantation model [155]. Taken together,
these data suggest that HO-1 participates basally in the regulation of inflammatory responses.

6. Relationship of Autophagy and HO-1: Two Tandem Cytoprotective Mechanisms?
6.1. Autophagy Process and Regulation

Autophagy is a genetically regulated cellular program that functions in the lysosome-
dependent degradation of cellular organelles and denatured or long-lived proteins [21,156–160].
During this process, cytoplasmic substrates are compartmentalized in double-membrane
bound vesicles called autophagosomes. Cargo-laden mature autophagosomes fuse to lyso-
somes, forming single-membraned autolysosomes, where the delivered cargo is degraded
by lysosomal proteases and other enzymes [21,156–159]. Degradation of macromolecular
substrates promotes recapture of precursor molecules (i.e., amino acids, lipids, and nu-
cleotides) for use in anabolic pathways, as a form of metabolic recycling. Autophagy is
genetically regulated by a distinct series of autophagy-related genes (ATGs) whose protein
products form a complex regulatory network [160,161]. Among these, Beclin-1 (Atg6) is
a master regulator of autophagy, while LC3 (Atg8) and related analogs are integral to
autophagosome formation [160,161].

Autophagy is generally recognized as a protective mechanism in response to nutrient
deprivation. However, activation of regulated cell death pathways may be dependent on
or cross regulate the autophagy program. The term “autophagic cell death” is no longer
used and has been replaced with the concept that autophagy can occur contextually in
dying cells [21,162,163].

Autophagy can be directed toward specific substrates in processes known as se-
lective autophagy [160,164,165]. The ubiquitination of subcellular targets represents a
universal signal for demarcation of selective autophagy substrates [165,166]. The target-
ing of autophagy substrates to the autophagosome is assisted by cargo adaptor proteins,
including p62SQSTM1 (p62) and other proteins, that can associate with ubiquitinated sub-
strates and with ATG8 homologs at the autophagosome membrane via the LC3-interacting
region (LIR) [166]. Selective autophagy programs have been identified for many types of
cellular constituents and named after their specific cargo. For example, lipophagy refers
to the selective degradation of lipids, xenophagy refers to pathogen-selective autophagy,
while “mitophagy” denotes the selective autophagy-dependent turnover of dysfunctional
mitochondria [167]. The regulation of mitophagy involves a canonical pathway dependent
on the activation of the transmembrane Ser/Thr kinase PINK1 (phosphatase and tensin
homolog deleted in chromosome 10 (PTEN)-induced putative kinase-1). During mitophagy
activation, PINK1 is stabilized on damaged or depolarized mitochondria. Pink1 phospho-
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rylates ubiquitin, which activates the E3: ubiquitin ligase Parkin (PARK2), which then acts
to ubiquitinate targets on the mitochondrial outer membrane, as a marker for organelle
degradation. Recent advances suggest that PINK1 recruits the mitophagy adaptors NDP52
and optineurin, which initiate mitophagy via ULK1 and other proteins [168].

Autophagy is tightly regulated by metabolic signals sensitive to energy levels,
reducing equivalents, and nutrient status, including growth factors, glucose, and amino
acid levels [157]. Growth factors negatively regulate autophagy through the mechanistic
target of rapamycin (mTOR) pathway. The autophagy pathway is positively regulated
by energy depletion through activation of the 5’-AMP activated protein kinase (AMPK),
which senses cellular AMP levels [157]. Depletion of cellular reducing equivalents regulates
autophagy via activation of the NAD+-dependent class III histone deactylase sirtuin 1 (SIRT1).
SIRT1 can bind and catalyze the deacetylation of key autophagy regulator proteins [169].

6.2. Autophagy and HO-1 Cross Talk

Emerging evidence suggests that HO-1 is co-regulated with cellular autophagy
(Figure 3), as both events as considered part of a global stress response. The nature
of this relationship, which is supported by evidence of cross talk, remains incompletely
understood and is explored in the following sections.

Cytotoxic agents that can promote oxidative stress and mitochondrial dysfunction
may represent a common overlapping stimulus for both autophagy activation and HO-1
induction. Genetic studies have revealed that HO-1 can confer protection in part by reg-
ulating mitochondrial homeostasis via enhancing mitophagy and mitochondrial quality
control. Cardiomyocyte-specific Hmox1 deleted mice (cm-Hmox1−/−) were highly sus-
ceptible to cardiac injury when exposed to hyperoxia challenge [170]. The cm-Hmox1−/−

also displayed abnormal mitochondria. In hearts from these mice, both the PGC-1α and
nuclear respiratory factor-1 (NRF1) signaling axis was inhibited. Further, mitochondrial
biogenesis, and Pink1/Parkin-dependent mitophagy were functionally impaired in these
mice [170]. In a model of epithelial cell injury in response to cigarette smoke (CS) exposure,
activation of the autophagy program correlated with epithelial cell apoptosis [171]. In ep-
ithelial cells, viral-mediated overexpression of HO-1 reduced the expression and activa-
tion of the autophagy marker microtubule-associated protein-1 light chain 3B (LC3B),
consistent with antiapoptotic cytoprotection and reduced activation of the extrinsic apopto-
sis pathway. siRNA-dependent HO-1 knockdown enhanced markers of autophagy and
reduced cell survival in this model [171]. These results unexpectedly demonstrated that
autophagy was co-regulated with apoptosis and promoted rather than protected against
cell death in response to CS exposure.

HO-1 was shown to upregulate autophagy in hepatocytes, leading to protection
against hepatocyte cell death and hepatic injury from infection during sepsis in mice [172].
HO-1 and autophagy were co-regulated in the liver in response to sepsis and inhibited
hepatocyte cell death. Pharmacological inhibition of HO-1 activity or knockdown of HO-1
prevented the induction of autophagy and associated signaling in this model and resulted
in increased hepatocellular injury, apoptosis, and hepatocyte death [172]. Recent studies
demonstrate that viral-mediated HO-1 overexpression can directly induce autophagy in
the liver and isolated hepatocytes, and can protect against hepatotoxin exposure [173].
Additional reports associate HO-1 dependent activation of autophagy with protection in
hepatic ischemic preconditioning, I/R injury, and transplant-associated I/R injury [174–176].
HO-1 dependent autophagic signaling exerted anti-inflammatory effects in LPS-activated
macrophages where HO-1 and autophagy cooperated to inhibit pro-inflammatory cytokine
production [177]. Interestingly, the p38 MAPK inhibitor SB202190 activated autophagy and
induced HO-1 in endothelial cells, in a manner that could be reversed by the autophagy
inhibitor Bafilomycin A1 [178].
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apoptosis-associated speck-like protein containing caspase-activation and recruitment doman [CARD]; GSDMD: gasder-
min-D; GSH: glutathione (reduced form); GSSG: glutathione disulfide (oxidized form); GPX4: glutathione peroxidase-4; 
GR: glutathione reductase; LH: lipid (reduced form); LOOH: lipid hydroperoxide; MLKL: mixed-lineage kinase domain-
like pseudokinase (p-, denotes phospho- form); NLRP3: nucleotide-binding domain, leucine-rich-containing family, pyrin 
domain-containing-3; RIPK1: receptor-interacting serine/threonine-protein kinase 1; RIPK3: receptor-interacting ser-
ine/threonine-protein kinase-3 (p-, denotes phospho- form); SXc-: cystine/glutamate transporter, System Xc-. 

Figure 3. Positioning of HO-1 in relation to cellular homeostatic, apoptotic, and regulated cell death (RCD) programs.
Heme oxygenase-1 and/or its reaction product CO can modulate the cellular autophagy program, which degrades cytosolic
proteins and organelles, and is itself implicated in cellular survival/protection. HO-1 via its reaction product CO has been
identified as a cellular antiapoptotic mediator via regulation of p38 MAPK and other factors. Induction of HO-1 via either
heme clearance and/or CO production may act as a mediator of inflammatory RCD programs. Among these, HO-1-derived
CO may inhibit NLRP3-ASC-mediated caspase-1 activation, which in term regulate gasdermin-D (GSDMD)-initiated
pyroptosis. HO-1 dependent heme clearance may play a protective role in regulating RIPK3/MLKL-dependent necroptosis.
Finally, HO-1-derived iron may promote lipid peroxidation, leading to ferroptotic cell death which implicates HO-1 as a pro-
death regulator in the context of iron overproduction. This pathway is counter-regulated by ferritin, which sequesters iron,
and promoted by autophagy-dependent degradation of ferritin (ferritinophagy). Abbreviations: ASC: apoptosis-associated
speck-like protein containing caspase-activation and recruitment doman [CARD]; GSDMD: gasdermin-D; GSH: glutathione
(reduced form); GSSG: glutathione disulfide (oxidized form); GPX4: glutathione peroxidase-4; GR: glutathione reduc-
tase; LH: lipid (reduced form); LOOH: lipid hydroperoxide; MLKL: mixed-lineage kinase domain-like pseudokinase
(p-, denotes phospho- form); NLRP3: nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-
3; RIPK1: receptor-interacting serine/threonine-protein kinase 1; RIPK3: receptor-interacting serine/threonine-protein
kinase-3 (p-, denotes phospho- form); SXc-: cystine/glutamate transporter, System Xc-.
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In addition to these observations, it is known that direct application of CO, a by-
product of HO activity, can induce markers of autophagy in cultured human epithelial
cells. CO exposure (250 ppm) increased the expression and lipidation of the autophagy
protein LC3B in mouse lung and in cultured human alveolar or bronchial epithelial cells.
Moreover, CO exposure increased autophagosome formation in pulmonary epithelial
cells via upregulation of mtROS formation [179]. CO exposure also conferred protection
against CLP in the mouse model associated with induced autophagy and phagocytosis,
a reduction in inflammation, and enhanced bacterial clearance from organs and blood.
These pro-survival effects of CO in CLP required Beclin-1-dependent autophagy [180].
Interestingly, inhibition of miR-34a provided protection in CLP sepsis via inhibition of the
inflammatory response, which involved coordinated upregulation of autophagy and HO-
1 [181]. These intriguing associations prompt further study into the relationship between
autophagy, HO-1 directed heme metabolism, and generation of HO-1-derived CO.

7. HO-1 as a Modulator of Regulated Cell Death (RCD) Programs
7.1. HO-1 as a Modulator of Apoptosis

Apoptosis, also formally known as Type 1 programmed cell death (PCD), is the clas-
sical genetically regulated cell death (RCD) program initially discovered in C. elegans.
Apoptosis provides essential homeostatic functions in regulating growth and development
of organs, and in tissue responses to injurious stimuli, such as exposure to xenobiotics or ad-
verse environmental conditions [17]. Disruption of apoptosis can promote tumorigenesis or
autoimmune disease, whereas excessive apoptosis may cause organ failure. In fibroblasts,
an antiapoptotic effect was also observed with HO-1 overexpression [182]. Application of
the HO-1 reaction product CO was shown to inhibit tumor necrosis factor-α (TNFα)-
initiated apoptosis in mouse fibroblasts [183], and endothelial cells [15]. The antiapoptotic
effect of CO in endothelial cells required the p38 MAPK pathway [15], and downstream
activation of NF-κB [183]. In cultured vascular smooth muscle cells, CO inhibited cytokine
(TNFα, IL1-β, INFγ)-induced apoptosis, dependent on activation of soluble guanylate
cyclase (sGC) [184,185]. Further studies revealed similar antiapoptotic effects of CO on
endothelial cell apoptosis in hyperoxia [122], and in anoxia/reoxygenation models [186].
The mechanisms underlying the antiapoptotic effects of CO have been reviewed exten-
sively elsewhere.

Human bronchial epithelial cells (Beas-2B) subjected to cigarette smoke extract (CSE)
responded with a time- and dose-dependent upregulation of HO-1. At low concentrations of
CSE, expression of HO-1 was shown to inhibit the activation of the extrinsic apoptotic pathway
in Beas-2B cells by inhibiting the formation of the Fas-associated death-inducing signaling-
complex and activation of downstream caspases -8,-9,-3 [171]. Interestingly, HO-1 expression
also inhibited the expression of autophagy proteins, LC3B and Beclin 1. These autophagic
proteins were critical mediators of the initiation of extrinsic apoptosis in these cells in
response to CSE exposure. Knockdown of either LC3B or Beclin 1 inhibited CSE-induced
activation of DISC formation and caspase-8 activation in Beas-2B cells. These experiments
suggest that the complex interplay of signaling molecules affected by HO-1 include not
only regulators of apoptosis pathways, but also of autophagy pathways. In the case of CSE-
induced cell death, enhanced autophagy correlated with increased cell death, therefore the
homeostatic function of HO-1 was consistent with the downregulation of both pathways.

7.2. Relationship between HO-1 and Pyroptosis

Pyroptosis refers to a form of inflammation-associated programmed cell death that
occurs in inflammatory cells such as macrophages and requires the activation of caspase-1.
This lytic form of cell death occurs during host infection under conditions of inflammasome
activation [187,188]. During pyroptosis, cells rupture to release their contents, which in-
clude excess pro-inflammatory cytokines which further propagate inflammation. Cell lysis
is triggered by caspase-1-dependent activation of gasdermin-D (GSDMD) which binds
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plasma membrane lipids (phosphatidylinositol 4-phosphate and phosphatidylinositol
4,5-bisphosphate) and forms transmembrane pores.

During acute inflammation, pyroptosis acts as a host defense mechanism to limit
infection through the elimination of infected macrophages, and to trigger host defense [189].
Excessive activation of pyroptosis can lead to tissue injury and pathogenic processes in the
context of chronic inflammation [188].

Activation of the Nrf2/HO-1 pathway has been implicated as an inhibitor of pyrop-
tosis in various model studies. The mechanisms by which HO-1 can mediate pyroptosis
remain unclear but likely act at the level of inflammasome regulation. In model studies,
exogenous CO application was found to inhibit caspase-1 activation and pro-inflammatory
cytokines production in cultured macrophages in an in vitro model of NLRP3 inflamma-
some activation. Upregulation of HO-1 was associated with protection from LPS-induced
acute kidney injury and caspase-1 dependent pyroptosis, in a mechanism involving PINK1
upregulation and preservation of mitochondrial function [189]. In a murine model of renal
I/R injury, pyroptosis was induced in injured tissue, in association with downregulation of
HO-1 [190]. Inhibition of protein arginine methylation transferase 5 (PRMT5), induced the
Nrf2/HO-1 axis in conjunction with reduced tissue and cellular oxidative stress, and re-
duced kidney pyroptosis markers [190]. Similarly, lung I/R injury in mice was associated
with activation of pulmonary macrophage pyroptosis. The application of rHBGB1 as a
preconditioning agent remediated lung injury and reduced markers of pyroptosis, in a
manner dependent on activation of the Nrf2/HO-1 axis [191]. In the hemorrhagic shock
and resuscitation (HSR) model, application of CO also inhibited pyroptosis [192]. Taken to-
gether, these studies suggest that HO-1/CO can inhibit inflammatory cell death in injury
models, but more studies are needed to determine the mechanisms by which HO-1 or CO
regulate pyroptosis.

7.3. HO-1 and Regulated Necrosis (Necroptosis)

Necroptosis, a genetically-regulated form of necrotic cell death, has emerging sig-
nificance in human disease [193–196]. Necroptosis presents many of the morphologi-
cal features of accidental necrosis including organelle swelling, plasma membrane rup-
ture, cell lysis and leakage of intracellular components, which in turn may propagate
secondary inflammatory responses via release of damage-associated molecular patterns
(DAMPs) [16,197]. Thus, similar to non-regulated necrosis, necroptosis represents an in-
flammatory mode of cell death [198,199]. The necroptosis pathway responds to diverse
signals including cellular stimulation with death-receptor ligands. Necroptosis is regulated
by receptor-interacting protein kinases-1 and -3 (RIPK1, RIPK3), and mixed-lineage kinase
domain-like pseudokinase (MLKL), which in the canonical pathway oligomerize to form a
regulatory “necrosome” complex [200,201]. The phosphorylation of MLKL by RIPK3 is the
primary event in necroptosis activation [200,201].

HO-1 has been associated with cytoprotection against both apoptotic and necrotic cell
death, in a dose-dependent and cell type dependent fashion. It is plausible that this protec-
tion would extend to regulated forms of necrosis (necroptosis). To date, however, only a
few studies have examined the relationship between HO-1 and necroptosis in cellular and
injury models. Free heme is a cytotoxic agent, which can act as a pro-oxidant, via its central
iron chelate. Heme released from hemoglobin can injury endothelial cells of the vasculature
by causing membrane damage. Pro-inflammatory effects of heme have been implicated in
the pathogenesis of sepsis and malaria. In vitro experiments showed that heme treatment
of macrophages can cause macrophage cell death with morphological features of necrosis.
The authors found that heme-induced necrotic cell death was dependent on TLR4 regulated
TNF production and enhanced ROS generation. Applications of antioxidants and JNK
inhibitors or of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIPK1)
was protective. Similarly, cells genetically deficient in Ripk1 or Ripk3 were protected from
heme-induced cell death. Macrophages from Hmox1−/− mice were also more sensitive to
heme toxicity and oxidative stress [202].
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In a model of hepatosteatosis induced by a high-fat diet in mice, RIPK3 was shown
to mediate hepatic injury mice, and conversely genetic deficiency in RIPK3 improved the
phenotype by reducing oxidative stress and the NF-κB-dependent inflammatory response
and activating the Nrf2/HO-1 axis. RIPK3 also mediated TLR4-dependent inflammation
in palmitate or LPS activated hepatocytes. Interference with the Nrf2/HO-1 axis reversed
the protective effect of RIPK3 deletion in LPS or palmitate exposed hepatocytes [203].

In contrast, this relationship was reversed in a model of post-hepatic I/R-mediated
metastasis of colorectal cancer. RIPK3 was responsible for Kuppfer cell death and promot-
ing metastasis following I/R in this model, in conjunction with elevated macrophage TNF
and HO-1 production which were immunosuppressive. Deficiency of TNF promoted tumor
progression whereas conversely, a monocyte/macrophage-specific deficiency in HO-1 or
inhibition of HO-1 reversed the immunosuppressive effect of macrophages, and reduced
tumor progression post-I/R. The authors concluded that host cell RIPK3 deficiency sup-
pressed HO-1 expression level and was associated with reduced immune cell recruitment
and inhibition of the tumor outgrowth [204].

In a model of oxidant-induced mixed cardiomyocyte cell death with features of
both apoptosis and necroptosis, preconditioning with dexmedetomidine (Dex), an α2-
adrenoceptor (α2-AR) agonist, resulted in reciprocal upregulation of HO-1 and down-
regulation of RIPK1/RIPK3 [205]. Taken together, these intriguing examples suggest
a regulatory relationship between HO-1 and RIPK3-dependent necroptosis, with heme
removal as a possible mechanism for HO-1-mediated cytoprotection.

8. HO-1, a Mediator of Ferroptosis

Ferroptosis is defined as a uniquely iron-dependent necrotic form of necrotic cell
death that is distinct from autophagy, apoptosis and other forms of necrosis-like RCD,
including necroptosis, and which has been implicated in the propagation of inflamma-
tion [206,207]. The morphologically distinct features of ferroptosis include mitochondrial
shrinkage and increased mitochondrial membrane density [206]. Blockage of cystine
uptake is a primary stimulator of ferroptosis, which results in impaired synthesis of re-
duced glutathione (GSH) for use as substrate for (phospholipid-hydroperoxide) glutathione
peroxidase-4 (GPX4)-mediated detoxification of organic hydroperoxides [208]. Iron can
catalyze the peroxidation of lipids resulting in membrane disruption characteristic of
ferroptosis. Inhibition of cystine uptake also promotes the degradation of ferritin via a nu-
clear receptor coactivator 4 (NCOA4)-mediated selective autophagy mechanism [209,210].
Ferroptotic cell death is inhibited by lipophilic antioxidants, such as ferrostatin-1 and oth-
ers [211]; and by iron chelators [212], which also can contextually inhibit oxidant stimulated
HO-1 expression [213,214]. Although HO-1 is generally found to be protective in autophagy
and other types of RCD, its specific role in ferroptosis remains unclear. While HO-1 may be
protective in mitigating pro-oxidant states by preserving mitochondrial function, as impli-
cated in the initiation of inflammatory cell death and apoptosis, HO-1 releases iron as a
reaction by-product, which is thereby implicated in the initiation of ferroptosis if in excess
or left unsequestered by ferritin. Thus, whether HO-1 is regarded as a promoter or inhibitor
of ferroptosis is context-dependent and varies with model studies.

Ferroptosis is implicated as a pathogenic mechanism of I/R or doxorubicin-mediated
cardiomyopathy. HO-1 increased in heart tissue following doxorubicin challenge and was
associated with iron deposition in cardiac mitochondria. The heme oxygenase inhibitor
zinc-protoporphyrin-IX (ZnPP), as well as mitochondria-targeted antioxidant, were found
to be protective in this model. Furthermore, ferroptosis-associated cardiomyocyte in-
jury could be alleviated by iron chelators and ferrostatin [215]. Downregulation of the
iron exported feroportin worsened ferroptosis-related injury in a model of intracerebral
hemorrhage [216]. These results indicate that HO-1, and specifically HO-1-derived iron,
can represent a pathogenic player in cardiomyopathy via iron-dependent ferroptosis and
may represent a therapeutic target for inhibition in this context.
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The oncogenic RAS-selective lethal small molecule erastin promotes ferroptosis.
HO-1 was found to be a critical mediator of erastin-induced ferroptosis in cancer cells,
as confirmed by genetic validation studies [217]. ZnPP, a HO-1 inhibitor, prevented
erastin-induced ferroptotic cell death, whereas HO-1 induction mediated by reagents
such as heme or CORM, promoted cell death in this model. These results affirmed the
critical role for HO-1 in promoting cancer cell ferroptosis [217]. Treatment with BAY 11-
7085 (BAY), an I-κBα inhibitor, induced ferroptotic death in cancer cells. In this model,
ferropoptosis was associated with increased Nrf2-dependent HO-1 expression, with sub-
sequent mitochondrial and nuclear translocation of HO-1 and increased mitochondrial
dysfunction and mitophagy-dependent turnover [218].

In contrast, some studies have implicated HO-1 as a cytoprotective mechanism against
ferroptosis as the product of induction by pre-conditioning agents. Kidney injury dur-
ing rhabdomyolysis was associated with ferroptosis as it was shown to be inhibited
by ferrostatin but not sensitive to RIPK3 deletion [219]. The antioxidant curcumin was
shown to reduce kidney injury during rhabdomyolysis via downregulation of ferroptosis.
Curcumin is a potent inducer of HO-1 in the kidney, and HO-1 was implicated in the
protective effects [219]. An antiferroptotic role for HO-1 was also proposed in kidney
epithelial cells subjected to erastin. In this model, Hmox1−/− kidney proximal tubule
epithelial cells were sensitized to erastin-mediated ferroptosis [220]. These intriguing
experiments suggest that HO-1 plays a complex role in ferroptosis that required further
experimental clarification.

9. Conclusions

HO-1 has emerged from its canonical role as a metabolic enzyme primarily engaged
in hemoprotein turnover, to a pleiotropic mediator of cellular function with potential
impact on inflammatory processes [1,2,14].The mechanisms by which HO-1 may impact
cellular processes are multivariate, and traditionally have been related to its enzymatic
activity and the generation of its reaction products, BV, iron and CO [2]. Beneficial func-
tions of HO-1 in cellular regulation, and also of its reaction product CO, largely involve
modulation of apoptosis, inflammation and cell proliferation [2,221]. HO-1 may serve
compartment-specific roles, including potential activity-dependent roles in the caveolae,
and mitochondria [126,127]. Emerging studies also suggest the existence of non-canonical
roles of HO-1 in effectuating cellular function, which are independent of heme catabolic
activity [121,122]. Of these include a nuclear form of the protein that regulates nuclear
transcriptional activity [124]. HO-1 has an intricate and incompletely understood role in
autophagy regulation and may positively or negatively coordinate with this process in
the maintenance of cellular defenses [222]. HO-1 also impacts the outcome of genetically
regulated cell death programs including apoptosis and other forms of necrosis-like RCD.
While HO-1 is generally associated with cytoprotection and inhibition of cell death pro-
cesses, in the case of ferroptosis, HO-1 may alternately serve to aggravate this process in a
context-dependent fashion.

These observations underscore the need for HO-1 to be tightly regulated to achieve
cytoprotective effects. HO-1 remains an attractive candidate therapeutic target for reme-
diation of inflammatory and other diseases [14]. Strategies to harness this therapeutic
role have included preconditioning with natural antioxidants and other inducers of HO-1,
Hmox1 gene therapy approaches [223,224], and application of the end products of HO
activity [14,114,225]. Most notably, CO, has been proposed as a therapeutic mimic of HO-1,
as achieved through the application of the gas or by pharmacological administration of
chemical donor compounds, including transition metal containing carbon monoxide releas-
ing molecules CORMs and organic CO donors [114,226–229]. Harnessing the therapeutic
potential role of HO-1 will depend on a comprehensive understanding of its context-
dependent impact, both positive and negative, on cell survival and death mechanisms,
as discussed in this review, including multimodal cell death involving or dependent on
autophagy, pyroptosis, necroptosis, and ferroptosis pathways. This is especially important,



Cells 2021, 10, 515 17 of 25

as the role of these processes themselves may have context-dependent and variable roles in
the propagation of inflammation and disease. Further, the roles of HO-1 in either mitigat-
ing or amplifying these processes in the progression of human disease are only partially
understood, and some such as autophagy and necroptosis may have both protective and
harmful sequelae.
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